| 1. | On maximal flat module and max - flat dimension 极大平坦模与极大平坦维数 |
| 2. | P - flat module , p - injective module and some rings 内射模和某些环 |
| 3. | In the last section the author define and study finitely generated coreduced left goren - stein flat modules on n - gorenstein and left perfect rings 第四部分我们研究了n - gorenstein 、左完全环上有限生成的上约化的gorenstein平坦左r -模。 |
| 4. | In this paper , we study the relations between n - absolutely pure modules and n - flat modules and define finite present n - flat modules and finite copresent n - absolutely pure modules 一绝对纯模和二一平坦模的关系作了进一步的讨论,并定义了有限表现。一平坦模与有限上表现的。 |
| 5. | In chapter 4 , we define the projective dimension of flat modules , use it to characterize many rings , and the relations between cotorsion modules and the projective dimension of flat modules are also given 在第四章中,我们定义了平坦模的投射维数,用它刻划了一些环,并讨论了cotorsion模和严坦模的投射维数的关系。 |
| 6. | In the second part of this paper , using of linear compact and injective cogenerator so on , we discuss the relations between morita duality and weak morita duality . in [ 16 ] , n - absolutely pure modules , n - flat modules and n - coherent rings are defined 在文献[ 16 ]中,作者定义了n -绝对纯模和n -平坦模,并在此意义下将凝聚环推广硕士学位论文:弱内射模与弱morit 。 |
| 7. | At fist we can conclude that kernels of the flat cover of a finitely gener - ated coreduced gorenstein flat module is also a finitely generated coreduced gorenstein flat module . moreover , the flat cover of the former ( the first gorenstein flat module ) is the flat envelope of the latter 首先我们由它的平坦盖就可得到核也是有限生成的上约化gon stein平坦模,并且它的平坦盖正好是核的平坦包;类似地,它的平坦包的上核也是有限生成的上约化的gorenstein平坦模,且它的平坦包是其上核的平坦盖 |
| 8. | In chapter 3 , we discuss n - flat modules and n - fp - injective modules , we define n - flat dimension and n - fp - injective dimension , we consider n - flat modules and n - fp - injective modules in commutative n - coherent rings , their properties are similar to flat and injectivc modules in commutative coherent rings 在第三章中,我们主要讨论了n -平坦模和n - fp内射模,定义了n -平坦维数和n - fp内射维数,并考虑了交换n -凝聚环中的n -平坦模和n - fp内射模。他们有类似于交换凝聚环中的平坦模和内射模的性质。 |
| 9. | Similarly , cokernels of the flat envelope of a finitely gener - ated coreduced gorenstein flat module is also a finitely generated coreduced gorenstein flat module , moreover the flat envelope of the former is the flat cover of the latter . and then we prove that over these rings , in quotient categories mod every finitely generated module has a finitely generated coreduced gorenstein flat preenvelope , and its two such preenvelopes are isomorphic 接着证明了这类环上每个模的极小平坦分解式的合冲模从第n个起都是有限生成的上约化的gorenstein平坦模,最后证明了在这类环上,商范畴dlaa中每个有限生y成模都有有限生成的上约化的gorenstein平坦包,并且这种盖在同构意义下是唯一的 |